Ch. 14: Endocrine System (updated 3/8/21)

Objectives:
1. Review anatomy - endocrine glands of body.
2. Understand how hypothalamus
 - Controls the endocrine system by controlling the pituitary gland.
 - Controls the sympathetic (fight/flight) response.
3. Learn anterior pituitary hormones & their effects on other glands of body.
4. Understand some common endocrine disorders.

2. Endocrine system = system involving regulation of body functions through use secretory glands & chemical messengers (hormones) Endocrine glands of body
 - Pituitary = master endocrine gland
 - Pineal gland = located in posterior diencephalon
 - Adrenal glands = located above kidneys
 - Thyroid = located on anterior trachea
 - Parathyroid glands = located on posterior thyroid
 - Gonads = ovaries & testes
 - Pancreas = secrete insulin and glucagon
 - GI tract

3. Hypothalamus controls the pituitary gland and sympathetic response
 > Controls endocrine system 3 ways:
 1) paraventricular nucleus secrete Oxytocin & supranoic nucleus secretes ADH, both released by posterior pituitary.
 2. Hypothalamus secretes 5 releasing hormones & 2 inhibiting hormones, which control anterior pituitary.
 3. Controls autonomic sympathetic secretion of epinephrine by the adrenal medulla.

4. Hypothalamic hormones: RH stands for releasing hormone, and IH stands for inhibiting hormone.
 See online practice flow diagram for hypothalamic hormones, pituitary hormones, and what target glands do!
 1) GnRH (gonadotropin-releasing hormone) – will affect gonads (testes & ovaries) Gn stands for gonad!
 2) GHRH (growth hormone releasing hormone) – will affect cell growth
 3) CRH (corticotrophin releasing hormone) – will affect a cortex (adrenal cortex)
 4) TRH (thyrotropin releasing hormone) – will affect thyroid gland
 5) PRH (prolactin releasing hormone) – stimulates mammary glands to make milk
 6) GHIH or somatomedin (growth hormone inhibiting hormone) – inhibits growth hormone
 7) PIH (prolactin inhibiting hormone) – does what it says. Inhibits prolactin secretion from pituitary, so mammary glands WON’T produce milk.

5. Anterior pituitary response to hypothalamic releasing or inhibiting hormones:

<table>
<thead>
<tr>
<th>Hypothalamic hormone</th>
<th>Pituitary hormone</th>
</tr>
</thead>
<tbody>
<tr>
<td>GnRH</td>
<td>secretes LH & FSH (luteinizing & follicle-stimulating hormone) – stimulates gonads</td>
</tr>
<tr>
<td>GHRH</td>
<td>secretes GH (growth hormone)</td>
</tr>
<tr>
<td>CRH</td>
<td>secretes ACTH (adrenocorticotropic hormone) – will stimulate adrenal cortex</td>
</tr>
<tr>
<td>TRH</td>
<td>secretes TSH (thyroid stimulating hormone) – does what it says</td>
</tr>
<tr>
<td>PRH</td>
<td>Prolactin</td>
</tr>
<tr>
<td>GHIH</td>
<td>inhibits GH secretion</td>
</tr>
<tr>
<td>PIH</td>
<td>inhibits prolactin secretion</td>
</tr>
</tbody>
</table>
6. **Figure of pituitary hormones & effect on target tissues** (review of earlier slides)
 - TSH – tells thyroid to produce T3 & T4, which regulate body metabolism
 - ACTH – tells adrenal cortex to make cortisol (stress hormone) & little bit of sex steroids
 - FSH – tells ovaries or testes to mature eggs & sperm
 - LH – tells ovaries or testes to make estrogen or testosterone, & ovaries to ovulate an egg
 - Prolactin – tells mammary glands to make milk
 - GH – tells body tissues to grow/repair

7. **Figure of whole system, at a glance (hypothalamic & pituitary hormones, and target organs response).**

8. **A practice blank flow diagram (and KEY) are found on the online syllabus.**
 Regulation of these hormones is through negative feedback loop.
 > If blood level of any of the target gland hormones gets too high, it tells hypothalamus and pituitary to inhibit their secretions of stimulating hormones.
 > If blood level of target gland hormones gets too low, hypothalamus & pituitary increase secretion of their stimulating hormones.

9. **Review slide**

10. **Pituitary disorders involving growth hormone**
 > **Pituitary dwarfism** = decreased growth from low GH
 > **Gigantism** = increased growth from excess GH (onset in childhood)
 > **Acromegaly** = increased growth from excess GH (onset in adulthood)

11. **Pituitary ACTH stimulates adrenal glands:**
 > **Adrenal cortex to make:**
 - **sex steroids** (T & E2) in small amounts. Disorder of this is **Congenital Adrenal Hyperplasia (CAH)** – intersex child.
 - **Mineralcorticoid** (it affects minerals or SALTS) **Aldosterone** = ↑Na+ readorption in kidney nephrons to control water retention. (Notice the word aldosterone has the letters for salt in it!)
 - **Glucocorticoid** (it affects blood glucose) **Cortisol**, which ↑ blood glucose during stress, and acts as natural anti-inflammatory
 > **Adrenal Medulla to make:**
 - **epinephrine** in response to hypothalamic autonomic sympathetic stimulation

12. **Clinical App online** - synthetic “glucocorticoids” = **prednisolone & dexamethasone** – used for anti-inflammatory BUT prolonged use can cause adrenal atrophy – so use in decreasing amts. They decrease body’s production of cortisol by negative feedback. When blood levels of synthetic glucocorticoid ↑ the hypothalmus shuts down CRH & pituitary shuts down ACTH. This makes adrenal gland atrophy from lack of stimulation.

13. **Adrenal Cortex Disorders**
 A) **Cushing’s Syndrome** (hypercortisolism) = excess **Cortisol** (excess hypothalamic CRH or pituitary ACTH)
 ↑ blood glucose (hyperglycemia), ↑ blood lipids (hyperlipidemia), abdominal fat
 ↑ fluid retention (moon face), hypervolemia (high blood volume), hypertension, muscle weakness.
14. B) **Addison’s disease** = insufficient Aldosterone & (and to some extent low Cortisol)
 - ↓ Na+ retention by kidneys, excess K+ retention- **Hyponatremia** = low blood sodium (Na+)
 - Hyperkalemia = high blood potassium (K+)
 - Hypovolemia = low blood volume (retaining water)
 - Hypotension = low blood pressure (from retaining water)
 - Anorexia = usually loss of body water
 - Hypoglycemia - too little cortisol
 - skin bronzing

15. C) **Conn’s Syndrome** (hyperaldosteronism) = excess aldosterone, excess salt & water reabsorption. Hypertension.
 - ↑ Na+ retention by kidneys, excess K+ excretion in urine
 - Hypernatremia = high blood sodium (Na+)
 - Hypokalemia = low blood potassium (K+)
 - Hypervolemia = low blood volume (retaining water)
 - Hypertension = low blood pressure (from retaining water)
 - weight gain = usually retaining body water

16. **Pheochromocytoma** = excessive epinephrine/norepinephrine (Clinical App Pg 340)
 - hypertension, hyperglycemia, increased metabolism, nervousness, sweating.

17. **Thyroid Gland** = responds to pituitary TSH
 1) T4 (thyroxine)
 2) T3 = tri-iodothyronine [both T3 & T4 Requires iodine to be produced]
 - Regulates body metabolism and growth
 3) Calcitonin = Decreases blood calcium concentrations

Parathyroid glands – produce parathyroid hormone to ↑ blood Ca+2 (by increasing intestinal absorption and pull of Ca+2 from bones).

18. **Thyroid Disorders**
 A) **Hyperthyroidism** – too much T3 & T4. Metabolism on hyperdrive.
 Caused by: tumor or
 Graves Disease - autoimmune attack on thyroid overstimulates receptors causing it to swell.
 Presentation:
 - High metabolism & anxiety
 - Intolerant to heat (sweating)
 - Tachycardia
 - Hypertension
 - ↑ fluid behind eyes (“exophthalmos”)

 B) **Hypothyroidism** – too little thyroxine. Metabolism depressed If occur <6 mos age = “cretinism” – dwarfism
 Causes: thyroid tumor, goiter, insufficient dietary iodine
 Presentation:
 - Low metabolism, depression
 - Intolerance to cold, dry skin,
 - Enlarged thyroid gland
 - When in children called “cretanism”

19. **Goiter** – can’t make thyroxine due to iodine deficient diet.
20. Gonads (Testes and Ovaries)
 Testes > respond to FSH by sperm production (by sertoli cells in seminiferous tubules)
 > respond to LH by producing testosterone (by leydig cells in seminiferous tubules)

 Ovaries > respond to FSH by developing new eggs (within follicles)
 > respond to LH by producing estrogen, and LH at day 14 of 28 day menstrual cycle causes ovulation.
 > respond to FSH by maturing an egg each month.

Disorders
21. Kallman’s Syndrome (Hypogonadism) = insufficient hypothalamic GnRH. \(\downarrow \) LH/FSH = \(\downarrow \) T = feminized male (intersex)
22. Androgen Insensitivity Syndrom (AIS) = tissues don’t respond to T (DHT). Feminized male (intersex)

24. Pancreas
 > beta cells make insulin. Causes tissues take up blood glucose (\(\downarrow \) blood glucose), & glycogenesis in liver & muscle
 > Alpha cells make glucagon. Causes glycogenolysis in liver (\(\uparrow \) blood glucose)

26. GI Tract
 > Gastrin (stomach) = stimulates HCL production (by parietal cells)
 > Secretin (sm. intestine) = stimulate water and bicarbonate secretion from pancreas
 > Cholecystokinin (sm. intestine)
 - stimulates gallbladder contraction (get bile into duodenum)
 - stimulates pancreatic enzyme secretion
 > Gastric inhibitory peptide (sm. intestine) = inhibits gastric motility (slow down) & stimulates pancreatic insulin.