Biology of Sexual Development

Objectives:

1. Sex vs. Gender defined.
2. Biological sex based on inheritance of sex chromosomes from gametes.
3. Biological sex during embryonic development driven by testosterone \& estrogen exposure.
4. Intersex: exception when biological sex is NOT binary.
5. Biological causes of intersex condition.

Reading Assignments:

1. Rediscovering Biology: Sex \& Gender (Pgs 5-9)
2. Gray Areas of Gender Intersex Essay (this is a bit edgy for some readers, but important)
3. Should We "Fix" Intersex Children?
4. Gender Definitions article
5. Hormone Hell
6. Gender-Bender Chemicals Are Harming Unborn Boys
7. Boys Won't Be Boys

Human Biological Sex vs Gender - Defined

Sex = biological binary system.
> Can be either male or female ONLY in lifetime (Gonochoristic).
> Based on chromosomes, genes, and body's response to hormones
> not defined by social construct.

Gender = not biological or binary system > includes a fluid spectrum

female

> defined by social construct of gender "norms"
> might not match with biological sex
$>$ perception of gender in brain

1. Gametes, chromosomes, and sexual reproduction.

- have 23 chromosome pairs	
> 22 autosome pairs	
> 1 pair sex chromosomes (XX or XY) - genetic info. for gender only	
C_{1}	
Autosomes (1-22)	
Review	Sex Chromosomes: X - has thousands of genes. Code for most of our traits. \mathbf{Y} - has few dozen genes. Most code for "maleness".

Sex determination:

Upon fertilization: creates diploid (2n) zygote

Sex determination:
We start out, by default, with the same non-specific gender having undifferentiated Structures:

\qquad

If have Y chromosome have the following genes, which turn on at 8 weeks of development:

Rediscovering Biology: Sex \& Gender Pgs 1, 5 - 9 (topics we are covering are in yellow)

Development Pathway of Internal Sexual Organs

Review:

- Gametes (sex cells) versus somatic cells
- haploid versus diploid
- role of mitosis \& meiosis
- Sexual reproduction
- Sexual differentiation at 8 weeks:
> development from undifferentiated gonad
(genital tubercle, labial folds, urethral folds, wolffian and mullerian ducts)
>role of SRY \& TDF genes
$>$ influence of testosterone
>influence of estrogen

2. When Sexual Development Goes ... Differently

\qquad chromosomal sex is inconsistent with phenotypic sex, or in which the phenotype is not classifiable as either male or female. There is a discrepancy between the external genitals and the internal structures. Occurs in 0.018% of the population

Criteria for being intersex quite diverse, but includes:
> Having both ovary and testis (internally)
> External genitals don't match clear male / female
$>$ Sex chromosomes don't match clear XX or XY.

Source: Intersex Society of North America - www. isna.org/faq

Source: Intersex Society of North America - www.isna.org/faq

2. When Sexual Development Goes ... Differently

The following is a list of disorders of sex development that sometimes involve intersex anatomy.

- How do I know if I have an intersex condition?
- 5-alpha reductase deficiency
- Androgen Insensitivity Syndrome (AIS)
- Aphalina
- Clitoromegaly (large clitoris)
- Congenital Adrenal Hyperplasia (CAH)
- gonadal dysgenesis (partial \& complete)
hypospadias
- I have a line along the underside of my penis

Klinefelter Syndrome
micropenis

- mosaicism involving "sex" chromosomes
- MRKH (Mullerian agenesis; vaginal agenesis, congenital absence of vagina)
- ovo-testes (formerly called "true hermaphroditism")
- Partial Androgen Insensitivity Syndrome (PMOS)
- Progestin Induced Virilization
- Swyer Syndrome

A Tumer Syndrome
Source: Intersex Society of North America - www.isna.org/faq

Intersex: exception when biological sex is NOT binary.

> Approx.0.5-1\% of humans born intersex.
Sources: Wikipedia, Planned Parenthood

Intersex: exception when biological sex is NOT binary.

Micropenis

Hypospadia

Clitoromegaly, hypospadia

Micropenis = \qquad
(1.5 / 10,000 male births)

Cliteromegaly = \qquad
(rare, usually due to hormones (exposure to testosterone) in girls, such as those with congenital adrenal hyperplasia or polycystic ovarian syndrome)

Hypospadia = \qquad
(fairly common, 1 / 250 male births)

Possible Causes of Intersex Condition:

1. Nondisjunction of sex chromosomes (during meiosis) - Meiosis problem.
2. Kallman syndrome (hypogonadism) - Brain problem.
3. Androgen-insensitivity syndrome (AIS) - Tissue problem.
4. Congenital adrenal hyperplasia (CAH) - Adrenal gland problem.
5. 5-alpha reductase deficiency - Enzyme problem.
6. Endocrine-Disrupting Chemicals - Environmental problem
7. Nondisjunction in the sex chromosomes
$=$ \qquad
> Egg or sperm has extra, or too few, sex chromosomes.
> May affect as many as 18% of all ova and 4% of all sperm!

1. Nondisjunction in the sex chromosomes

Example:
A) \qquad = XXY male (extra X chromosome)
> Affects about 1 / 650 newborn boys.
$>$ It is among the most common sex chromosome disorders.
$>$ Have smaller testes, \& low testosterone.
$>$ Some degree of feminized features after puberty if not diagnosed \& treated with supplemental testosterone.

May or may not also have:
> Gynocomastia = \qquad
> Cryptorchidism = \qquad
> Hypospadia = \qquad
> Micropenis = \qquad
$>$ Hip development - due to estrogen changing fat deposition.z
$>$ Infertility
> Taller than average
> Poor muscle development
Source: https://medlineplus.gov/genetics/condition/klinefelter-syndrome/

1. Nondisjunction in the sex chromosomes -
B) \qquad $=X O$ female (missing second X chromosome)
> Female appearance
> 1 / 2,500 female births (often goes undiagnosed until older)

May or may not also have:
> Short, wide neck
$>$ Wide chest
$>$ Widely spaced nipples
> Might have fertility problems

- Missing an X chromosome on 23 Pair.

2) \qquad
= Brain problem - hypothalamus doesn't stimulate gonads.
$>$ Rare - 1 out of 50,000 births
Normal pathway
Hypothalamus

\downarrow
Pituitary Gland

Ovaries make -

Testes make -
= Brain problem - hypothalamus doesn't stimulate gonads.

3. \qquad
= genetic male (XY) with normal genes, testes development, normal vas deferens, normal testosterone production BUT tissues fail to respond to testosterone.
(androgen-insensitivity)

> 1 / 13,000 male births

Born with varying degree of intersex

$>$ micropenis
$>$ incomplete fusion of labial folds into scrotal sac
> hypospadias
$>$ poor or no sperm production (sterile)
$>$ extra testosterone converted into estrogen \& get female hip development \& gynecomastia.

Partial AIS - partial fusion of scrotal skin, micropenis or enlarged clitoris
4. \qquad
= fetus with overgrown adrenal cortex. Produces high testosterone. In genetic female (XX) testosterone masculinizes fetus. Born intersex with ambiguous genitals.

> 1 / 13,000 girl births
Megaloclitoris (enlarged "phalli
$>$ Full or partial fusion of labia intc
> Studies have shown CAH girls have masculinized brain.

5.
= Lack enzyme (5- α reductase) needed to convert testosterone to dihydrotestosterone (DHT).
$>$ Need DHT for proper formation of penis, prostate, \& scrotum.
Rare (no estimate of frequency)

$3 \beta, 17 \beta$-diol
(3β-diol)

Testosterone
Aromatase

6. Endocrine-Disrupting Chemicals (EDCs)

= Man-made chemicals released into environment that mimic or disrupt natural hormones that influence sex development and functions.

Daisy, Bubbles and Elrod suspect that someone is slipping "SUPER HORMONES" in their feed

6. Endocrine-Disrupting Chemicals (EDCs)

Ex. Bisphenol = estrogen-mimic found in plastics. Can feminize males at 30 $u g / \mathrm{kg} /$ day. At $20 \mathrm{ug} / \mathrm{kg} /$ day can damage eggs \& chromosomes. At ~ 2 ug/kg/day can cause early puberty in girls, increase growth prostate and breast cells.

Dose (pgikgidny)	Effects (measured in studies of inboratory animale)	Study Year [20]
0.025	Permanent cherges to gental tract	2005
a ces	Changes in breast tissue tha predispose cells to hormones and cearcinogens	2005
1.6	Low levels of human exposure from diet	2003
2	30\% increase it proctate weingt	1997
2.4	Signs of eafly puberty	2002
2.4	Docine in testicuiar testostarone	2004
2.5	Freast ceks preasposed to cancer	2006
10	Prastate celts more senstive to hormones and canter	2006
10	lesulin resistance	2006
10	Decreased maternal behawior	2002
13	High levels of human exposure from diet	2003
20	Damepe to egos and chroesosumes	2003
25	Heath Cersods provesional human exposure timit	1999
30	Hyporactivity	2004
30	Reversal of normat sex diflerence in brain strucure	2001
50	U S. human exposure fimit	1990

Review

5 ways sexual development can go wrong

1. Problem in meiosis - Non-disjunction of sex chromosomes in eggs or sperm

- Klinefelter \& Turner Syndromes

2. Brain problem - Kallmann Syndrome
3. Problem with tissues - AIS
4. Problem with adrenal glands - CAH
5. Enzyme problem-5- α reductase deficiency
6. Endocrine-Disrupting Chemicals
