Practice Questions Ch 10:

1. All arteries of the body contain oxygen-rich blood with the exception of the

2. The “lub” (S1) or first heart sound, is produced by the closing of the
 B. pulmonary semilunar valve. E. tricuspid and bicuspid valves.
 C. tricuspid valve F. aortic and pulmonary semilunar valves.

3. The first heart sound is produced at the

4. The QRS wave of an EKG is produced by
 A. depolarization of the atria. C. depolarization of the ventricles.
 B. repolarization of the atria. D. repolarization of the ventricles.

5. The P-wave of an EKG is produced by
 A. depolarization of the atria. C. depolarization of the ventricles.
 B. repolarization of the atria. D. repolarization of the ventricles.

6. The second heart sound (S2 or “dub”) immediately follows the occurrence of
 A. the P-wave. B. the QRS wave. C. the T-wave.

7. An ischemic injury to the heart that destroys myocardial cells is

8. Antibodies against both type A and B antigens are found in the blood of a person who is
 A. type A. B. type B. C. type AB. D. type O.

9. Production of which of the following blood cells is stimulated by a hormone secreted by the kidneys?
 A. Lymphocytes C. Erythrocytes
 B. Monocytes D. Neutrophils

10. During diastole the ventricles are
 A. relaxed and filling. B. contracting C. depolarizing

11. A type of anemia resulting from low dietary vitamin B12.
 A. Renal B. Fe+ deficiency C. Pernicious D. Aplastic E. Hemophilia

12. Which type of WBC is found in the most abundance in the blood?
 A. Lymphocytes B. Monocytes C. Eosinophils D. Neutrophils E. Basophils

13. Which of the following would be an appropriate treatment to lower heart rate in a patient with tachycardia and also asthma?
 A. Aldosterone B. ACE inhibitors C. Propanolol D. Atenolol E. Digitalis
14. Which of the following would be an appropriate treatment to increase heart rate in a patient with bradycardia?
 A. Na+ channel blockers D. Atenolol
 B. Ca+2 channel blockers E. Digitalis
 C. Propanolol

15. Which of the following could explain an abnormally high RBC hematocrit?
 A. Anemia B. Bleeding C. Dehydration D. Low erythropoietin E. Overhydration

16. According to the Frank Starling law of the heart, the strength of ventricular contraction is
 A. directly proportional to the end diastolic volume (EDV).
 B. inversely proportional to the EDV.
 C. independent of the EDV.

17. In the absence of compensation by changes in heart rate, stroke volume will decrease when
 A. blood volume increases. D. contractility decreases
 B. venous return increases. E. None of these.
 C. contractility increases.

18. Both ADH and aldosterone act to
 A. increase urine volume. C. increase total peripheral resistance in arteries.
 B. increase blood volume. D. produces all of these effects.

19. The korotkoff sounds are produced by
 A. closing of the semilunar valves. C. the flow of blood through an artery.
 B. closing of the tricuspid and bicuspid valves. D. the flow of blood through a vein.

20. Increased heart rate during exercise is primarily due to the effects of
 A. α-adrenergic stimulation. D. muscarinic-cholinergic stimulation.
 B. β2-adrenergic stimulation. E. β2-cholinergic stimulation.
 C. β1-adrenergic stimulation. F. β1-cholinergic stimulation.

21. An increase in blood volume and decreased osmolarity (perhaps from drinking too much water) will cause
 A. increased ADH secretion by the hypothalamus.
 B. increased renin secretion by the JGA. E. increased aldosterone secretion by adrenal cortex.
 C. decreased ADH secretion by the hypothalamus. F. both answers C and D
 D. increased ANP secretion by the heart. G. both answers A and B

22. Baroreceptors in the aortic arch and carotid sinus
 A. stimulate hypothalamic ADH release.
 B. stimulate a sympathetic or parasympathetic response from the medulla’s cardiac center.
 C. stimulate renin release by the JGA.
 D. stimulate erythropoietin release by the kidneys.
23. Angiotensin 2
 A. stimulates conversion of angiotensinogen into angiotensin 1.
 B. stimulates renin release by the JGA.
 C. stimulates aldosterone release by the adrenal cortex.
 D. activates ACE in the lungs.
 E. stimulates ADH release.

24. Which organ converts angiotensinogen into angiotensin 1?
 A. JGA B. Hypothalamus C. Adrenal cortex D. Lungs E. Liver F. Kidneys

25. Increased blood osmolarity stimulates

26. Which is the largest potential source for loss of body water?
 A. Sweat B. Feces C. Kidneys D. Breathing

27. Decreased renal artery blood pressure stimulates

28. As end diastolic volume increases
 A. stroke volume decreases. E. contractility decreases
 B. stroke volume increases. F. contractility increases
 C. cardiac output decreases. G. answers A, C, and E.
 D. cardiac output increases. H. answers B, D, and F.

29. Parasympathetic decrease of the heart’s pacemaker cell depolarization involves
 A. α-adrenergic stimulation. D. muscarinic-cholinergic stimulation.
 B. β2-adrenergic stimulation. E. β2-cholinergic stimulation.
 C. β1-adrenergic stimulation. F. β1-cholinergic stimulation.

30. The range of blood volume, in liters, of a 100 kg man would be
 A. 8 – 8.5 L B. 4 – 4.5 L C. 16 – 16.5 L D. 6 – 6.5 L
Ch 10. Answers:
1. B
2. E
3. A
4. C
5. A
6. C
7. B
8. D
9. C
10. A
11. C
12. D
13. D
14. E
15. C
16. A
17. D
18. B
19. C
20. C
21. F
22. B
23. C
24. E
25. B
26. C
27. C
28. H
29. D
30. A

How did you do?