Ch. 1 – Introduction to Physiology

Ch 1 Objectives:

Part 1. Understand homeostasis & feedback loops

Part 2. Review chemistry of pH (as it applies to physiology)

Announcements:

- Are you something other than prenursing (pre-pharmacy, pre-med, pre-vet)?
- Course webpage is NOT on Blackboard! It's simply online.
- A link to the course textbook can be found on online syllabus.

1

Part 1. Physiology, homeostasis, and feedback loops.

Physiology = the study of how the body maintains homeostasis.

Homeostasis = how the body keeps vital functions within normal range.

2 Systems that regulate homeostasis:

1.

2.

List some important vital signs (which body maintains homeostasis of) that nurses routinely measure on patients in an office visit:

Homeostasis components:

a) **Stimulus:** a change in a body function, usually outside of normal range.

- b) Sensor (receptor): detects this change. Sends signal to integrating center.
- **c) Integrating center:** where sensory info. Is interpreted, compared to a "set point" or normal range for that body function. Responds by sending a command (nervous or endocrine).
- e) Effector = muscle or gland that responds to the command.
- **f) Effect =** <u>usually</u> reverses the initial change in body function (if neg. feedback loop).

3

Feedback Loops:

1. Positive Feedback Loop

when change occurs body responds by causing more of that change.
 (Amplifies the effect) * rare feedback system in the body!

2. Negative Feedback Loop (most common!)

= when change occurs body responds by reversal of the change.(Reverses the effect) * Most common feedback system!

Ex. A) Negative Feedback Loop = Body to	emperature
Body Temp Set point = 98.6 °F (range 9	97.6 - 99.6 °F)
Stimulus = body temp above setpoint Sensors = (anterior nucle Effectors = body temperature	eus) shutterstock.com • 120823501
Stimulus = body temp: Sensors = Integrating center = Effectors = Effect = body temperature	

See practice flow diagram on <u>negative feedback</u> regulation of body temperature

(blank and KEY both found in online syllabus)

See practice flow diagram on negative feedback regulation of blood glucose (blank and KEV both found in online cyllabus)

(blank and KEY both found in online syllabus)

Type 1 Diabetes (also known as ______) What is the problem? Type 2 Diabetes (also known as ______) What is the problem?

11

Ex. C) Negative Feedback Loop = Blood Pressure changes Pg 5 of Wiki text					
1. Stimulus = BP too low (Systolic BP below 80 mmHg)					
2. Sensors =					
3. Integrating center =(cardiac & vasomotor centers)				
4. Effectors = 1:					
5. Effect =					
VERSUS					
1. Stimulus = BP too high (Systolic BP over	160 mmHg)				
2. Sensors =					
3. Integrating center =					
4. Effectors = 1:					
2:					
5. Effect =					

See practice flow diagram on negative feedback regulation of high and low blood pressure (blank and high BP KEY and low BP KEY both found in online syllabus)

15

Review

- Physiology
- Homeostasis

Dynamic constancy of internal environment despite external changes

Feedback Loops

Positive Feedback (breast feeding & milk let-down, and childbirth)
Negative Feedback (body temp, blood glucose, blood pressure)

See **syllabus** for practice flow diagrams:

1. pH		Table 2.3 The pH Scale				
= logarithmic scale of:	pH = -log ₁₀ [H+]		H ⁺ Concentration (Molar)*	рН	OH Concentration (Molar)*	
Hydrogen ions (H+) Hydroxide ions (OH-)		Acids	1.0	0	10-14	
			0.1	1	10-13	
Numerical scale 0 – 14 < 7 = acidic (has more H+ ions) 7 = neutral > 7 = alkaline (has fewer H+ ions and more OH- ions)			0.01	2	10-12	
			0.001	3	10-11	
			0.0001	4	10-10	
			10-5	5	10 ⁻⁹	
	s and more OH- ions)		10-6	6	10 ⁻⁸	
 Importance of pH: Shapes/functions of molecules Enzyme activity Most chemical reactions in body Ability of molecules to dissolve in water 		Neutral	10-7	7	10-7	
		Bases	10 ⁻⁸	8	10-6	
		10-9	9	10-5		
	. a. al		10-10	10	0.0001	
	•		10-11	11	0.001	
	live in water		10-12	12	0.01	
			10-13	13	0.1	
			10-14	14	1.0	
		One mole is hydrogen ha	10 ⁻¹⁴ entration is the number the atomic or molecules an atomic weight of a riter of solution.	lar w	er of moles of a s	

Blood pH range = 7.35 - 7.45

____ = blood pH < 7.35.

____ = blood pH > 7.45.

ACIDOSIS - ALKALOSIS

**Blood pH outside normal range interferes with:

- > hemoglobin's oxygen carrying capacity
- > Functions of enzymes
- > Chemical reactions involved in homeostasis

Organ systems that regulate blood pH:

- 1. Lungs fastest to regulate blood pH. (Pg 10 of Wiki text)
- 2. Kidneys
- 3. Liver

21

Review

- pH Scale
 - **Acids**
 - **Bases**
- Organ systems that regulate blood pH
- Acidosis & alkalosis

Next Chapter is Ch 2 part 1 – cell metabolism