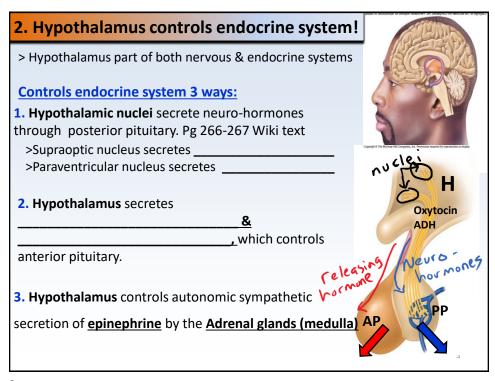
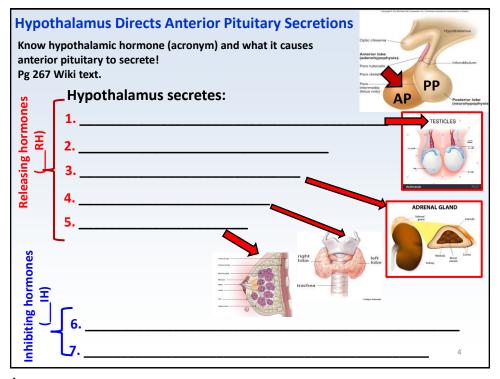
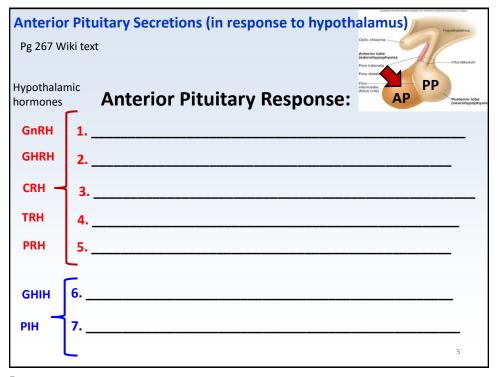
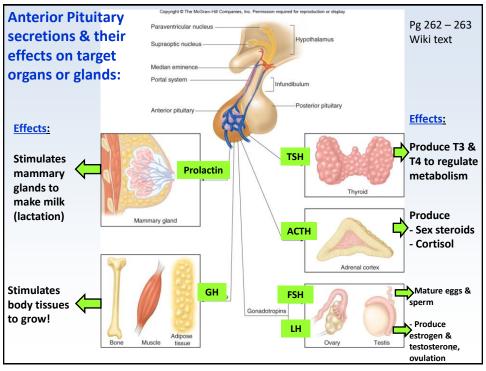
## **Ch 14: Endocrine Physiology**

PowerPoint updated 2/17/25


### **Objectives**


- 1. Review endocrine glands of body.
- 2. Understand how hypothalamus controls endocrine system & sympathetic epinephrine response.
- 3. Learn anterior pituitary hormones & their effects on glands of body.
- 4. Understand some endocrine disorders.


1


1

### 1. Endocrine Glands of the Body **Endocrine System** = system involving regulation of body functions through use chemical messengers (hormones) secreted Thyroid gland by glands. **Endocrine glands of body:** Pituitary = master endocrine gland Pineal gland = located in diencephalon Adrenal gland > Adrenal glands = located above kidneys Pancreas : Thyroid = located on anterior trachea Parathyroid glands = located on posterior trachea > Gonads = ovaries & testes ➢ GI tract Pancreas **≻** Liver \*\*Most of these glands controlled by hypothalamus!









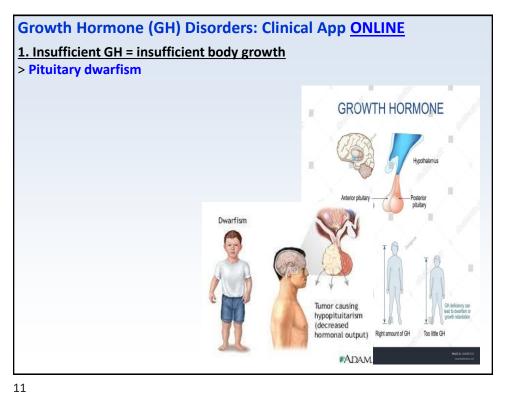
| Practice Endocrine <u>Blank Flow Chart!</u> Found on online syllabus. <u>Key</u> also found there. |                                 |             |
|----------------------------------------------------------------------------------------------------|---------------------------------|-------------|
| HYPOTHALAMUS SECRETES: 5 Releasing hormones & 2 inhibiting hormones  1 2 3 4 5 6 7                 | ANTERIOR PITUITARY RESPONSE:  1 | S RESPONSE: |

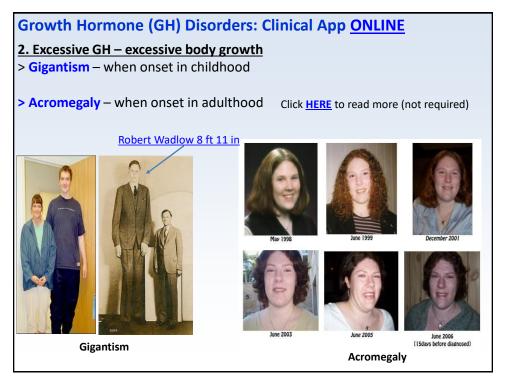
### Endocrine hormone regulation is through negative feedback.

Pg 265 – 266 Wiki text

If blood levels of a hormone are too low, hypothalamus increases RH secretion & pituitary increase its hormone secretions.

If blood levels of a hormone are too high, hypothalamus decreases RH secretion & increases IH secretion, then the pituitary decreases its hormone secretions.


### Ques:


Can you think of a hormone that is not regulated through negative feedback, but by positive feedback??

9

# Review

- Endocrine glands of body
  - Pituitary, adrenals, thyroid, parathyroids, gonads, pineal gland, pancreas, GI tract, pancreas, liver.
- Hypothalamic controls endocrine system
  - Nuclei secrete ADH & oxytocin
  - 5 Releasing hormones (CRH, GnRH, TRH, GHRH, PRH)
  - 2 Inhibiting hormones (PIH, GHIH)
  - Controls adrenal medulla secretion of epinephrine
- Anterior pituitary secretions & their target organs
  - ACTH, TSH, GH, FSH, LH, PRL
- Negative feedback regulation of endocrine system





### Pg 272 – 274 Wiki text

# Pituitary ACTH stim. <u>Adrenal</u> Cortex to make:

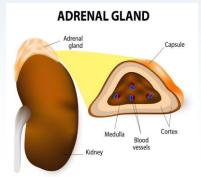
Under sympathetic response hypothalamus stimulates <u>Adrenal Medulla</u> to make

1. Sex steroids

Ex. -\_\_\_\_

2. Glucocorticoids

Ex.


**Clinical App ONLINE** 

Exogenous glucocorticoids and negative feedback on adrenal cortex

Adrenal cortex also makes

Mineralcorticoids, but stimulus for
secretion is low blood pressure NOT ACTH

(tells kidney tubules to increase **salt**, & then water retention)

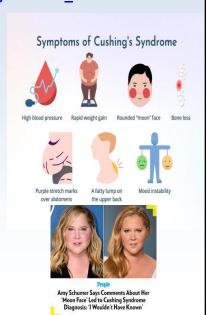


13

### **Adrenal Cortex Disorders:**

A. <u>Cushing's Disease</u> ("hypercortisolism") – Excess <u>Cortisol</u>

### **Clinical App ONLINE**


### Causes:

- Excess hypothalamic CRH or pituitary ACTH
- Adrenal gland tumor

### **Clinical Presentation:**

- Hyperglycemia =
- Hyperlipidema =
  - Hypervolemia =
  - Hypertension =

Click **HERE** to read more (not required)



### Adrenal Cortex Disorders:

B) Addison's Disease - Low Aldosterone & Low Cortisol

Often called "adrenal insufficiency"

### **Clinical App ONLINE**

### Causes:

Click **HERE** to read more (not

required) - ↓hypothalamic CRH or pituitary ACTH.

- Adrenal cortex tumor or autoimmune disorder

### **Clinical Presentation:**

- Hyponatremia =
- Hyperkalemia =
- Hypovolemia =
- Hypotension =
- Anorexia =
- Skin bronzing
- Hypoglycemia -



### **Adrenal Cortex Disorders:**

C) Conn's syndrome (hyperaldosteronism)

### **Causes:**

- usually adrenal cortex tumor

### **Clinical Presentation:**

- Hypernatremia =
- Hypokalemia =
- Hypervolemia =
- Hypertension =
- Weight gain =

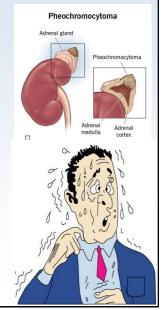
17

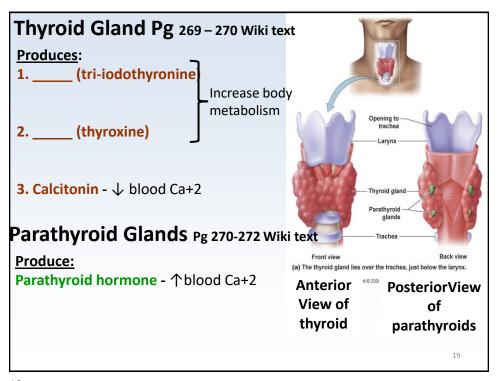
17

### **Adrenal Medulla Disorders:**

**Pheochromocytoma** = excessive norepinephrine/epinephrine

### Clinical App ONLINE


### Causes:


- adrenal medulla tumor


**<u>Clinical Presentation:</u>** "fight or flight" symptoms

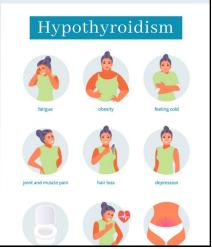
- Tachycardia
- Hypertension
- Hyperventilation
- Hyperglycemia
- Hyperlipidema
- sweating,
- Nervousness, anxiety or panic attack

Click **HERE** to read more (not required)

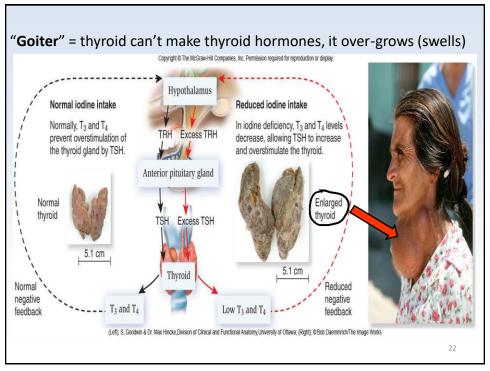


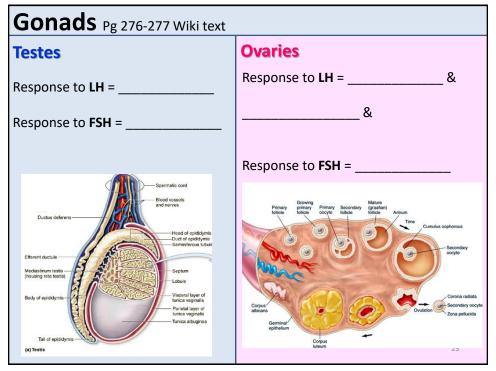


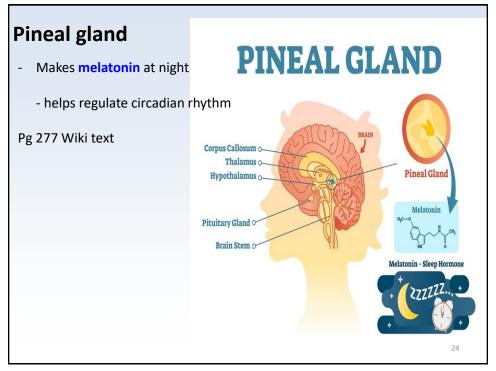



### Thyroid gland disorders – Clinical App ONLINE

**B. Hypothyroidism** = insufficient thyroid hormones (click <u>HERE</u> to read more) <u>Causes</u>: thyroid tumor, goiter, insufficient dietary iodine.


5 / 100 people in US. Occurs more often in women.


### **Clinical presentation**:

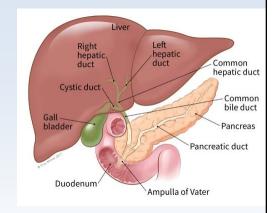

- Low metabolism, depression
- Intolerance to cold, dry skin,
- Enlarged thyroid gland
- When in children called "cretanism"



21








### **Pancreas**

Makes insulin and glucagon
 Pg 268, 272-274 Wiki text

### Clinical App ONLINE

Diabetes mellitus



### Liver

- Makes erythropoietin stimulates RBC production
- Responds to pancreatic glucagon by engaging in Glycogenolysis (break glycogen into glucose & release into blood).

25

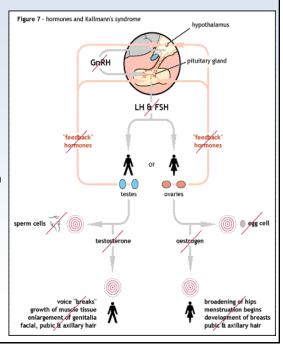
25

# GI Tract 1. Gastrin (stomach) = 2. Secretin (sm. intestine) = 3. Cholecystokinin (sm. intestine) 4. Gastric inhibitory peptide (sm. intestine) = Small intestine

# Review

- · Endocrine glands of body
  - Pituitary, adrenals, thyroid, parathyroids, gonads, pineal gland, pancreas, liver, GI tract
- Endocrine disorders
- Hormones produced by each gland

27


27

### **Sex Steroid Disorders:**

A. Kallmann Syndrome (Hypogonadism) = insufficient hypothalamic GnRH production. Results in less pituitary LH & FSH. Causes ↓testes growth and ↓ testosterone and estrogen production.

In male child – can interfere with development of penis, testes, sperm production, and other masculine traits.

> Rare - 1 out of 50,000 births



### **B. Androgen Insensitivity Syndrome (AIS)**

= genetic male (XY) with normal genes, testes development, normal vas deferens, normal testosterone production BUT tissues fail to respond to testosterone. (androgen-insensitivity)

> 1 / 13,000 male births

### Born with varying degree of intersex

- > micropenis
- > incomplete fusion of labial folds into scrotal sac
- > hypospadias
- > poor or no sperm production (sterile)
- > extra testosterone converted into estrogen & get female hip development & gynecomastia.









**Complete AIS** 

Partial AIS – partial fusion of scrotal skin, micropenis or enlarged clitoris

29

# Review

- Intersex disorders
  - Kallman's syndrome
  - AIS