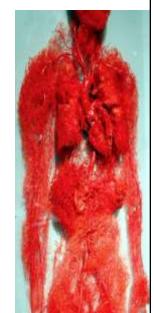
Ch 7 & 8: Blood and Cardiac Physiology

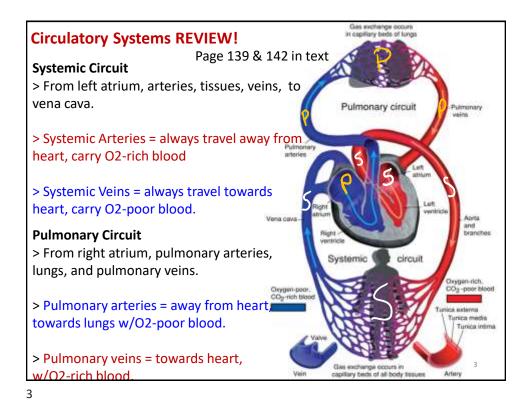
Objectives

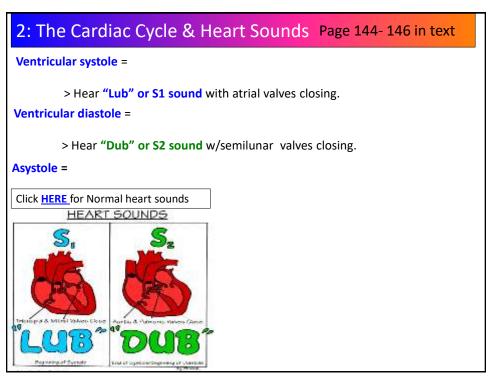

Ch 8:

- 1.Review: Heart Anatomy, and Systemic & Pulmonary circuits.
- 2. The Cardiac Cycle and Heart Sounds
- 3. The Heart's Conduction Cycle & the ECG
- 4. Regulation of Heart's Pacemaker (heart rate)
- 5. Blood Pressure
- 6. Cardiac output and its Regulation
- 7. Three Ways the Body Regulates Blood Pressure
- 8. Abnormal Blood Pressure
- 9. Congestive Heart Failure

Ch 7:

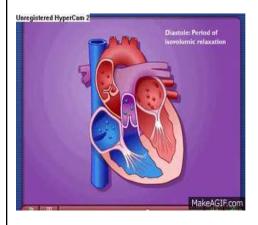
10. Blood Physiology




1

Page 138 in text ANATOMY REVIEW! Other vessels attached to heart: Brachiocephalic a. L common carefid a

- 1. Superior & inferior vena cava
- 2. Right atrium
 - 3. tricuspid valve (R atrioventricular)
- 4. Right ventricle
 - 5. pulmonary semilunar valve
- 6. Pulmonary trunk
- 7. Pulmonary arteries (O2-poor) to lungs
- 8. Pulmonary veins (O2-rich)
- 9. Left atrium
 - 10. bicuspid valve (L atrioventricular)
- 11. Left ventricle
 - 12. aortic semilunar valve
- 13. Aorta
 - > ascending
 - > arch
 - > descending



Ventricular Diastole

Ventricular Systole

GIF

5

Click **HERE** for Normal heart sounds

Heart Murmurs:

> Innocent murmur =

> Pathologic murmur =

Murmurs typically caused by valve disease:

- Ex. "regurgitant flow" = backward flow through valves.
 - aortic stenosis = stiffening of aortic semilunar valve.
 - rheumatic heart disease = autoimmune attack on valves (bicuspid)

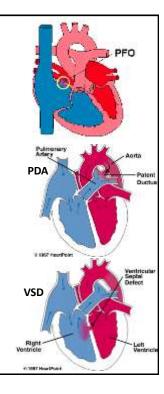
Click **HERE** for innocent (benign) murmur sound

Click **HERE** for aortic stenosis sound

Click **HERE** for split S2 (split dub) sound

Click **HERE** for bicuspid (mitral) valve regurgitant flow sound.

These, and more, heart sounds can be found **HERE**


Heart defects: Clinical App

Septal Defects:

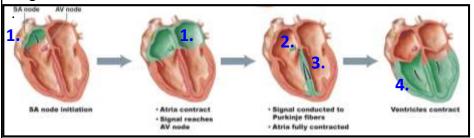
1. Patent foramen ovale =

2. Patent ductus ateriosus =

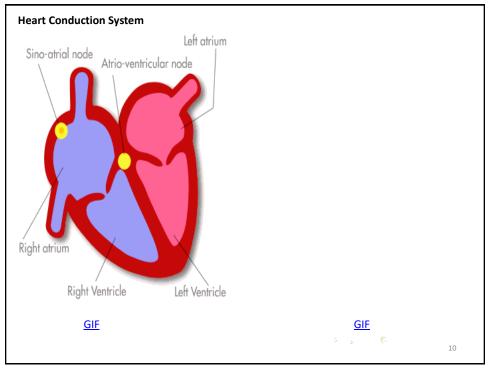
3. Ventricular septal defect =

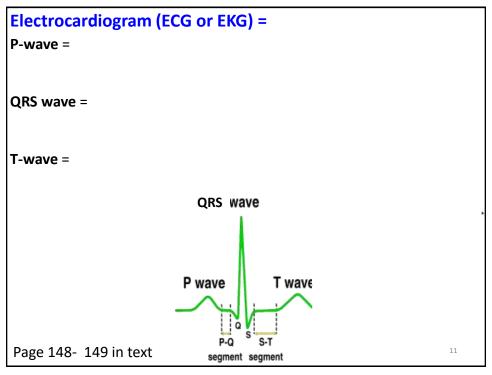
7

Review


- The cardiovascular system (pulmonary & systemic circuits)
- · Cardiac cycle & heart sounds
 - ventricular diastole Vs systole
 - Lub / Dub or S1 / S2 sounds (normal sounds & innocent murmur)
 - Abnormal heart sounds (pathological murmers)
- Heart defects
 - Patent foramen ovale
 - Patent ductus arteriosus
 - Ventricular septal defect

3: The Heart's Conduction System & ECGs


Heart is "autorhythmic" = starts its own signal for contraction.


- 1. SA node =
- 2. AV node =
- 3. Bundle of HIS =
- 4. Purkinje fibers =

Page 146-148 in text

C

11

4: The Heart's Pacemaker & Its Regulation

Regulated by cardiac center in medulla oblongata!

Sympathetic innervation with thoracic & cardiac nerves:

- Neurotransmitter =
- Receptor =
- Heart rate

Parasympathetic innervation with vagus nerves:

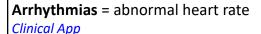
- Neurotransmitter =
- Receptor =
- Heart rate

4: The Heart's Pacemaker & Its Regulation

Spontaneous APs start in pacemaker myocardial cells

- 1. Heart pacemaker cell depolarization (stimulation): Epinephrine binding to $\beta 1$
 - > opening of _____ & ____channels
 - > causes AP (or EPSP)
 - >Myocardial cells contract! (Signal started!)

Epinephrine binding to \$1 adrenergic receptors on pacemaker increase rate of depolarization


- 2. Heart pacemaker cell repolarization (rest):
 - > opening of _____ channels
 - > Myocardial cells relax!

ACh binding to muscarinic cholinergic receptors on pacemaker decrease rate of depolarization

APs started in SA node pacemaker muscle cells travel through rest of conductions system (i.e. AV node, Bundle of HIS, & purkinje fibers).

13

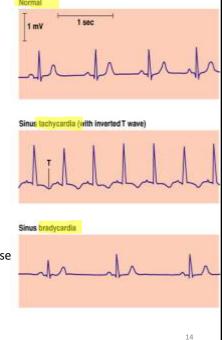
13

Tachycardia =

-

- **Treatments:**
- > Na+ channel blockers (quinidine, lidocaine)
- > Ca⁺² channel blockers (verapamil)
- > Beta blockers

ex. (General beta blocker =


(B1-specific blocker =

Bradycardia =

Treatments:

- > Digitalis increases Ca+2 available to increase contractile strength.
- > B1-agonist =

> MAO-I A =

Review

- Cardiac conduction system
 - SA node, AV node, Bundle of HIS, Purkinje fibers
- Monitoring electrical activity of the heart (EKG)
 - P wave, QRS wave, T wave
- The Heart's Pacemaker
 - parasympathetic and sympathetic regulation
- Arrhythmias (tachycardia & bradycardia)
 - Drugs to treat arrhythmias

15

15

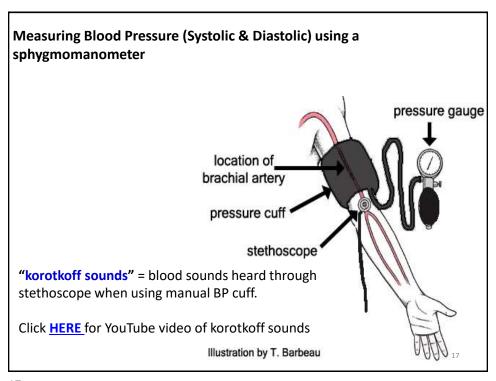
5: Blood Pressure

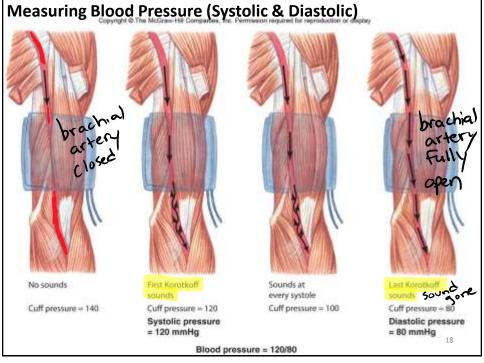
Blood Pressure = pressure of arterial blood against vessel wall.

Systolic BP = pressure resulting from ventricular contraction.

- always the higher number.

Systolic arterial BP normal range = 80 – 160 mmHg


Diastolic BP = pressure with ventricular relaxation.


- always the lower number

120 mmHg

Page 149 – 150 in text

16

6: Cardiac Output

Cardiac Output = Stroke Volume X Heart Rate (ml/min) (ml/beat) (bpm)


Average HR varies (~60 – 80 bpm)

AVG stroke volume = 70 – 80 ml/beat

AVG cardiac output = 5500 ml/min (5.5L/min)

Cardiac Output influenced by:

- 1.
- 2.
- 3.
- 4.
- 5.

19

Things That Influence Cardiac Output:

1. Heart Rate:

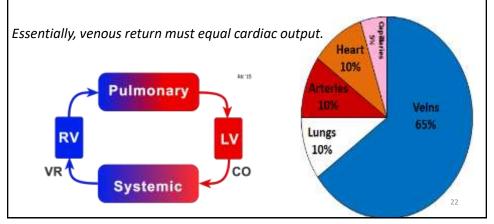
HR changes with sympathetic or parasympathetic stimulation.

What are some drugs we've covered that can ↑ HR, thus will ↑ cardiac output?

What are some drugs we've covered that can \sqrt{HR} , thus will \sqrt{L} cardiac output?

Things That Influence Cardiac Output:

2. Stroke Volume:


21

21

Things That Influence Cardiac Output:

REVIEW!

3. End Diastolic Volume (EDV) -=

Things That Influence Cardiac Output:

4. Stretching of ventricles (and heart contractility)

Frank-Starling Law of the Heart

So.... As EDV ↑,

As EDV ↓,

23

23

Things That Influence Cardiac Output:

5) Total peripheral resistance (TPR) =

Things That Influence Cardiac Output:

In summary:

As HR \uparrow , cardiac output \uparrow As HR \downarrow , cardiac output \downarrow

As stroke volume \uparrow , cardiac output \uparrow As stroke volume \downarrow , cardiac output \downarrow

As EDV \uparrow , cardiac output \uparrow As EDV \downarrow , cardiac output \downarrow

To re-cap:

Click <u>HERE</u> for a really good YouTube video explaining effect of HR, stroke volume, EDV, ventricular stretch, and TPR on cardiac output.

 \uparrow ventricular stretch, \uparrow heart contractility, so cardiac output \uparrow \downarrow ventricular stretch, \downarrow heart contractility, so cardiac output \downarrow

And

As TPR \uparrow , stroke volume and cardiac output \downarrow As TRP \downarrow , stroke volume and cardiac output \uparrow

25

25

Review

- · Blood pressure
- Factors that influence cardiac output:

there are MANY factors, but we covered:

Heart rate

Stroke volume

EDV

Stretching of ventricles (Frank Starling principle) and heart contractility. TPR

7: Three Ways the Body Regulates Blood Pressure

Blood pressure is directly influenced by **blood volume**:

The kidneys have the most important control of blood volume, by how much water they retain (keep in bloodstream) versus how much they excrete as urine.

Kidneys affected by sympathetic and parasympathetic control, AND by hormones.

27

27

7: Three Ways the Body Regulates Blood Pressure

The Quick Fix to BP Artery baroreceptors & medulla oblongata (cardiac and vasomotor centers) Fixes BP quickly, but does not last long The Slow Fix to BP Hormones that affect kidney water reabsorption. Takes more time to fix BP, but its effect lasts longer (hours or days)

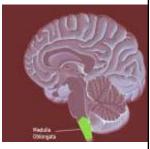
7: Three Ways the Body Regulates Blood Pressure

1. Baroreceptor reflexes

"baroreceptors" = pressure receptors that detect stretching of arteries OR the heart chambers.

2. Hypothalamus

3. Kidney regulation


29

29

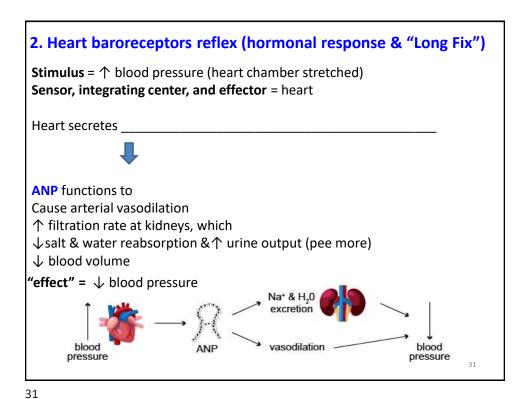
1. Arterial baroreceptor reflex (the "Quick Fix")

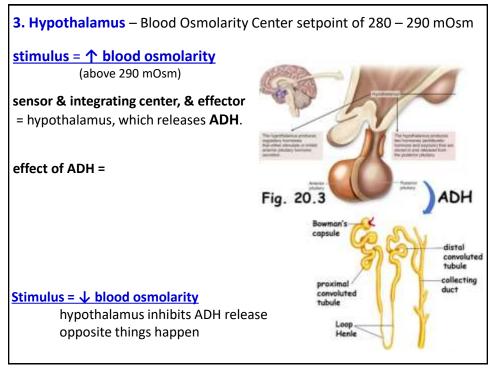
Stimulus = change in arterial blood pressure outside 80 – 160 mmHg

Sensor = aortic arch & carotid artery baroreceptors **Integrating center** = medulla cardiac & vasomotor centers

A) If stimulus of ↓ BP (below 80mmHg)

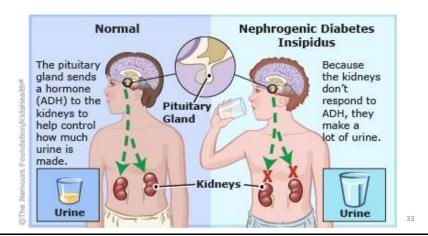
Autonomic response is sympathetic


- Neurotransmitter = _____
- Pacemaker muscle receptors = ______, HR ↑
- arterial vasoconstriction
- BP ↑


B) If stimulus of \uparrow BP (above 160 mmHg)

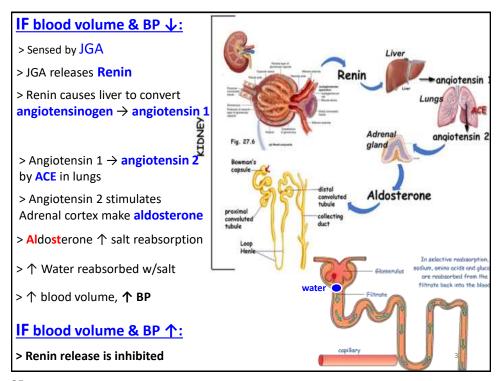
Autonomic response is parasympathetic

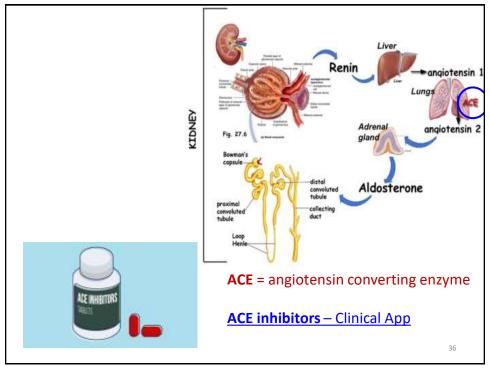
- neurotransmitter = _____
- pacemaker muscle receptors = ______, HR↓
- arterial vasodilation
- BP ↓


30

Diabetes insipidus = insufficient ADH release by hypothalamus.

- ↓ water reabsorption at kidneys
- ↑ urine output (pee more)
- ↓ blood volume and BP
- become chronically dehydrated


33


4. Kidney -renin-angiotensin-aldosterone system ("long fix")

Stimulus = low BP at renal artery of kidneys

Sensor, integration center, & effector = kidney juxtaglomerular apparatus (JGA)

"effect" = ultimately, an increase in BP

Addison's Disease = low aldosterone production by adrenal cortex.

- ↓ salt (reabsorption by kidneys)
- ↓ water reabsorption by kidneys

Clinical presentation?

Hyponatremia =

Hyperkalemia =

Bradycardia =

Polyuria =

Hypovolemia=

Hypotension =

Skin bronzing

Normal adrenal gland

Conn's Syndrome = "hyperaldosteronism" or excess aldosterone

Clinical presentation?

Hypernatremia =

Hypokalemia =

Oliguria =

Hypervolemia=

Hypertension =

3

37

See blank and key flow diagrams on the online syllabus!

For the quick fix and long fix for **LOW BP** and the **KEY**

(This will involve a **quick fix** by the medulla, and a **long fix** by the renin angiotensin aldosterone system)

For the quick fix and long fix for **HIGH BP** and the **KEY**

(This will involve a **quick fix** by the medulla, and a **long fix** by the heart secreting ANP)

For the fix of **HIGH BLOOD OSMOLARITY** and the **KEY**

(This involves the hypothalamus and ADH)

And click <u>HERE</u> for a PDF outlining which systems engage when BP is too low or too high. These will each involve a **quick fix** by the medulla, and a **long fix** by a hormone. Also, this goes over blood osmolarity regulation by the hypothalamus and ADH.

Review

- Blood volume & blood pressure regulated by
 - Medulla baroreceptor response (Quick fix)
 - Low BP causes sympathetic arteriole vasoconstriction and ↑ in HR & BP
 - High BP causes parasympathetic arteriole vasodilation and \downarrow in HR & BP

Slow fixes

- Heart baroreceptor response (ANP)
- Hypothalamus (ADH release)
- Kidney (renin-angiotensin-aldosterone system)

39

39

8: Abnormal Blood Pressure

Hypotension = low BP

Hypertension = high BP. Can be due to MANY factors.

2 types of Hypertension:

- 1. Primary (idiopathic) Hypertension = exact cause unknown.
- 2. Secondary Hypertension = result of disease (i.e. kidney or cardiac problem)

Pausible causes of 2° Hypertension

> Hypervolemia = high blood volume.

Can occur with:

- Excess ADH secretion
- "Conn's syndrome" (hyperaldosteronism) = Excess aldosterone secretion
- > Stress
- > Pheochromocytoma = high epinephrine from adrenal medulla
- ➤ Atherosclerosis narrowing of arteries from cholesterol deposits
- ➤ **Renal artery disease** (↑ renin or increased angiotensin 2 secretion)
- ➤ Pre-eclampsia (gestational hypertension) = vasoconstriction of maternal arteries or problems with placenta. Causes still largely unknown.

41

41

Hypertension Drugs

Can you think of any drugs (especially ones we've covered) that can lower BP?

Circulatory Shock = inadequate blood flow to all body tissues

Page 155 in text

Many types:

1. Hypovolemic shock = drop in blood volume and BP (blood loss, dehydration)

body response = ↑ heart rate (compensatory to ↑ BP) = vasoconstriction (to ↑ BP)

2. Septic shock = drop in blood volume and BP from infection (sepsis). Caused by bacterial toxins in blood. Causes vasodilation & \downarrow BP

body response = same as for #1.

3. Anaphylactic shock = drop in blood volume and BP due to massive histamine release which causes vasodilation and \downarrow BP.

body response = same as #1

4. Congestive heart failure = drop in blood volume and BP due to heart not working.

Body response = same as #1

43

43

Cardiac Diseases: Atherosclerosis = buildup of cholesterol plaques within arterioles. Can decrease blood flow and lead to: ATHEROSCLEROSIS Normal artery Normal blood flow Artery with inflammation Decressed blood flow Aneurysm Aboornal blood flow

Formation of thrombus =

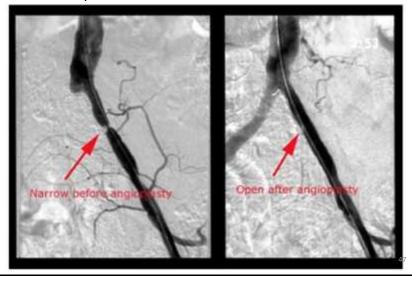
Embolism =

Ischemia =

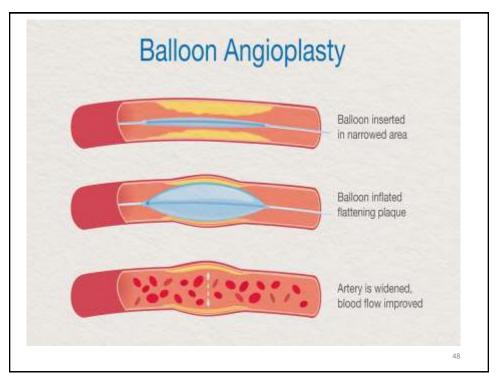
Ex. Stroke = blocked blood flow to brain.

Ex. Heart attack = blocked blood flow to heart.

Aneurysm =


45

45


Click <u>HERE</u> for a brief YouTube diagramatic explanation of an embolism.

Click <u>HERE</u> for YouTube video of an actual surgical removal of an embolism. (*Warning: graphic content*)

Angiogram = diagnostic test that uses x-rays to take pictures of your blood vessels. A long flexible catheter is inserted through the blood stream to deliver dye (contrast agent) into the arteries making them visible on the x-ray

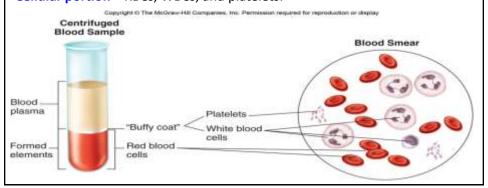
47

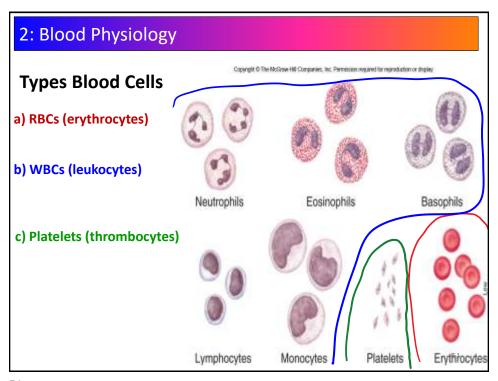
Review

- Abnormal blood pressure
 - Hypotension
 - Hypertension (1° and 2°)
 - Some causes of 2° hypertension
- Circulatory shock
 - Hypovolemic shock
 - Septic shock
 - Body's response to shock
- Atherosclerosis leads to many other circulatory problems.

49

49


9: Blood Physiology


Blood Composition: Page 123 in text

Whole blood = liquid portion of blood along with the cells.

Plasma = liquid portion of blood (with things dissolved in it like salts, hormones, proteins, etc...)

Cellular portion = RBCs, WBCs, and platelets.

Hemoglobin

Hemoglobin carries

oxygen thoughout

Oxygen molecule Red blood cell

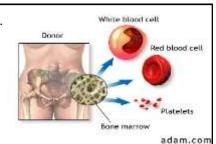
51

Page 124 in text

RBCs (Erythrocytes)

> Carry O2 bound to hemoglobin (heme + iron).

- > ~500 million new RBC each day!
- > RBCs last~120 days then removed by liver & spleen.
 - Heme broken into bilirubin (yellow pigment), which liver removes.
 - Iron in hemoglobin re-used in new RBCs.
- jaundice = yelllowing of the skin & mucus membranes due to liver failure.


- **erythropoeisis** = process by which new RBCs are made (in bone marrow). Stimulated by hormone **erythropoietin** (released by liver & kidneys.)

Polycythemia = higher than normal RBC count.

Anemia = lower than normal RBC count. **Clinical App**

Can be due to many factors:

- Iron deficiency anemia = low iron in diet.
- Pernicious anemia = poor vitamin B12 absorption (need to make RBCs)
- Aplastic anemia = bone marrow defect (often from chemotherapy treatment.
- Renal anemia = low erythropoietin production by kidneys.
- Autoimmune hemolytic anemia = immune attack on RBCs (see with Rh disease)

53

Blood Typing

2 Major RBC antigens:

- 1) ABO antigens
- 2) Rh antigen

1) ABO

Blood Type A – have _____antigens & ____ antibodies - receives type _____ blood

_____antigens & _____antibodies **Blood Type B** – has - receives type _____ blood

Blood Type AB – has _____antigens & ____antibodies – "universal recipient", can receive ______blood

Blood Type O – has antigens, & antibodies

- "universal donor", but can receive only type O blood

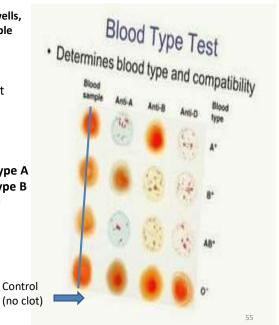
2) Rh factor

Rh+ = have Rh antigen on RBCs **Rh-** = not have Rh antigen (~85% of popluation)

(~15% of population)

54

Blood Type Test


You put blood sample into each of 3 wells, then add antibodies against the possible Antigens.

If see clotting (agglutination)
The RBCs must have antigen to that antibody.

Add patient's blood to test card:

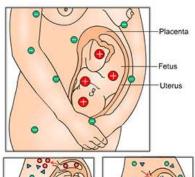
Add anti-A antibodies - if clots = Type A
Add anti-B antibodies - if clots = Type B
If no clots in either A or B = Type O
Add anti-Rh (D) antibodies

- if clots = Rh+
- no clot = Rh-

55

Rh incompatibility in pregnancy

If Rh- woman pregnant from Rh+ man – 50% chance baby is Rh+


Risk of exposure of mom's blood stream to fetal RBCs with Rh+ antigens.

(Ex. During miscarriage or tissue tearing during birth or C-section)

Mom's immune system would develop anti-Rh antibodies within 2 weeks of exposure.

- During her <u>next pregnancy</u> if baby Rh+, maternal antibodies cross placenta
- Maternal antibodies attack (hemolyze) fetal RBCs
- "autoimmune hemolytic anemia" = immune destruction of RBCs in baby from mom's antibodies

Page 129 in text

Clinical App

Rh incompatibility in pregnancy

Prevention:

- > If doctor suspects exposure to Rh+ blood in mom's first pregnancy.
- > Give injection of anti-Rh antibodies to mom
- > antibodies destroy and fetal Rh+ fetal RBCs in mom's body BEFORE her immune system detects & makes own antibodies.

Page 129 in text

57

57

b) WBCs (Leukocytes)

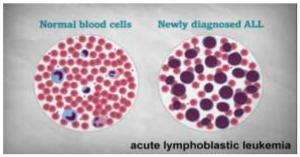
Page 125 in text

2 Groups:

- 1) Granulocytes = WBCs with granules in cytoplasm
- 50-70% Neutrophils = 1st responders to infection/inflammation.

- 2-4% **Eosinophils** = see w/chronic inflammation, infection, allergies, parasites
- <1% Basophils = non-phagocytes, produce histamine & heparin in allergic reaction.

- 2) Agranulocytes = lack granules.
- 2-8% Monocytes = phagocytes that seek out , engulf, & destroy pathogens


- 20-30% Lymphocytes = defense from pathogens
 - > T cells =
 - > B cells = become plasma cells to produce antibodies.

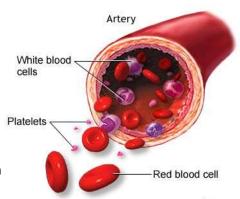
Never Let Monkeys Eat Bananas (neutrophils, lymphocytes, monocytes, eosinophils, basophils)

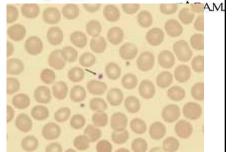
Leukocyte disorders - Clinical App

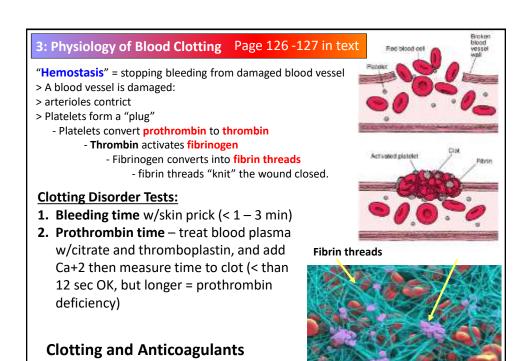
> Leukocytosis = ↑ WBC count (infections!)

> Leukemia = \uparrow in immature numbers of WBCs, especially lymphocytes. (immature cells not protective)

> Leukopenia = ↓ WBC count (with immunosuppression, radiation Tx)


59


59


c) Platelets (Thrombocytes)

Page 126 in text

- ➤ Circulate ~ 5-9 days
- > Function to start clot formation
- "thrombopoietin" = hormone from liver & kidney that stimulates platelet production by bone marrow.

61

Clinical App

Collecting & Examining Blood Components:

Vacutainer tubes = use vacuum to draw blood into tube.

- > Red top = no anticoagulant. After spin get serum as fluid portion (use in serological tests)
- > **Purple top** = has EDTA anticoagulant. After spin get "plasma". No spin use for blood counts, disease testing.
- > Light blue = sodium citrate (for clotting tests)

Click HERE for Wikipedia description & uses of various vacutainer tubes.

62

Review

- The 3 ways the body regulates blood volume and blood pressure
 - Heart baroreceptors: heart secretes ANP when BP is too high (a long fix)
 - Arterial baroreceptors and the medulla's cardiac and vasomotor center (provides a quick fix to BP that is either too low or too high)
 - Hypothalamic ADH secretion when blood osmolarity rises too high.
 - Renin angiotensin aldosterone system, which engages when BP is too low
- · Blood composition
 - Plasma
 - Erythrocytes, leukocytes, platelets
 - · Granulocytes (basophils, eosinophils, neutrophils)
 - Agranulocytes (lymphocytes, monocytes)
- Blood Typing
- · Blood clotting with platelets
- · Techniques for Collecting & Examining Blood

63