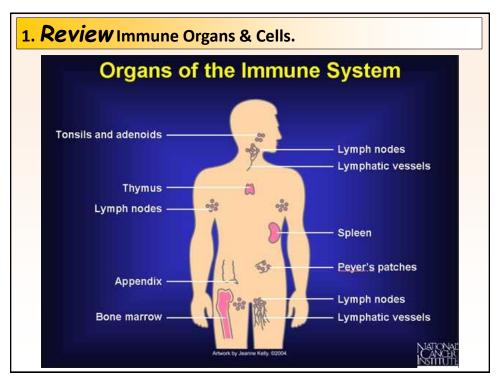
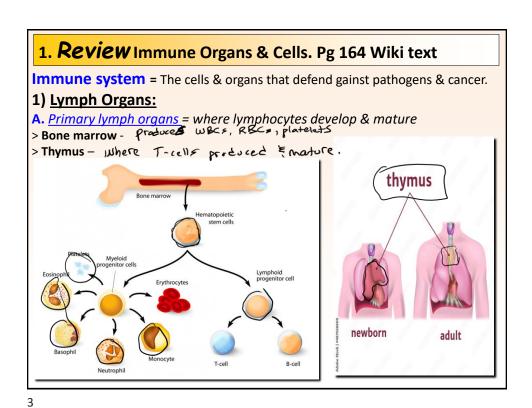
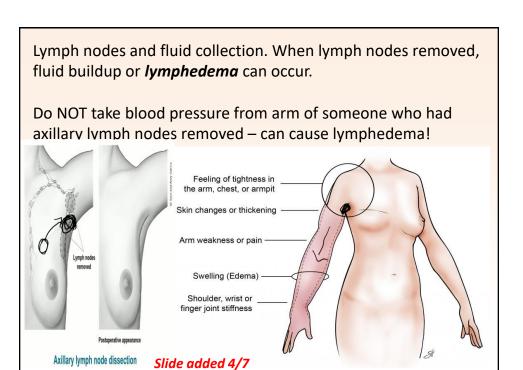
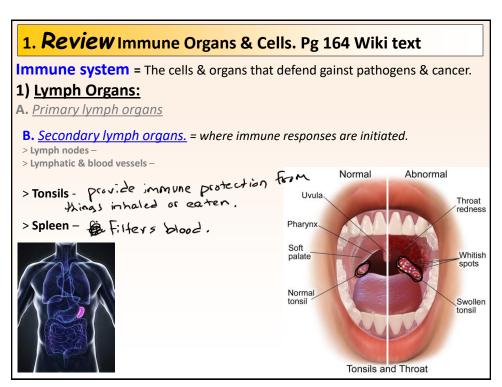

Ch. 11: Immune Physiology


Objectives:


- 1. Review immune organs & cells.
- 2. Two categories of immunity: innate vs adaptive
- 3. Understand functions of adaptive immunity cells (T-cells and B-cells)
- 4. Natural vs artificial immunity
- 4. Understand autoimmunity disorders.




1

1. Review Immune Organs & Cells. Pg 164 Wiki text **Immune system** = The cells & organs that defend gainst pathogens & cancer. 1) Lymph Organs: Fister lymph floid. A. Primary lymph organs **B.** <u>Secondary lymph organs.</u> = where immune responses are initiated. > Lymph nodes - where Teels & B cells five B cells make antibodies > Lymphatic & blood vessels lymph node Right lymphatic return leaked Thoracic duct Axillary lymph node Subclavian Thoracio e; sculatory Intestinal Spleen system. lymph node Lymphatic vessel (transports lymph) lymph node

1. Review Immune Organs & Cells. Pg 164 Wiki text

Immune system = The cells & organs that defend gainst pathogens & cancer.

1) Lymph Organs:

A. Primary lymph organs

B. Secondary lymph organs. = where immune responses are initiated.

- > Lymph nodes -
- > Lymphatic & blood vessels -
- > Tonsils -
- > Spleen -

> Intestines - have peyers patches to protect from ingested pathogens.

> Appendix - immune function at start
of large intestine (colon)

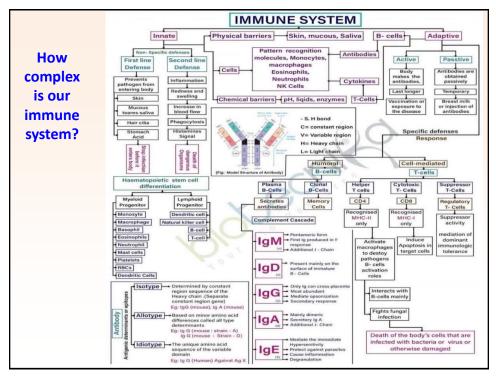
> Liver - filters toxins from blood, purpose of your appendix?
Has Kupffer cells have immune Function.

7

1. Review Immune Organs & Cells. Pg 164 Wiki text

Immune system = The cells & organs that defend gainst pathogens & cancer.

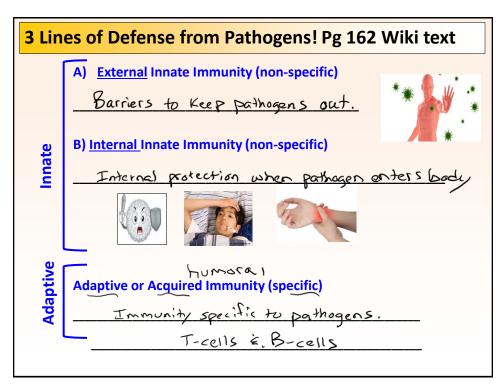
1) Lymph Organs:

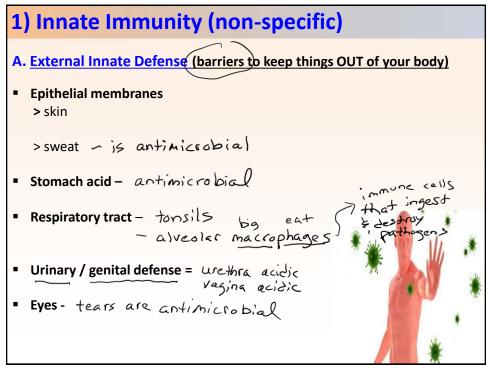

A. Primary lymph organs

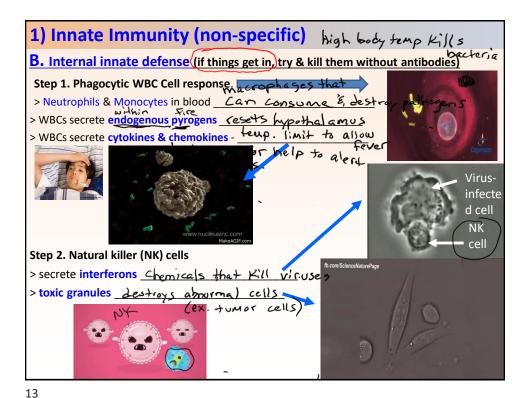
B. <u>Secondary lymph organs.</u> = where immune responses are initiated.

- > Lymph nodes -
- > Lymphatic & blood vessels -
- > Tonsils -
- > Spleen -
- > Intestines –
- > Appendix
- > Liver

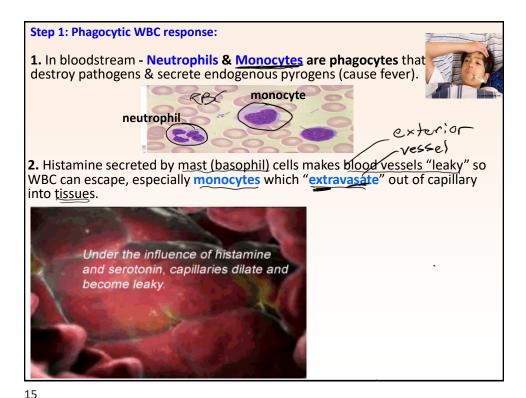
> Brain - has microglia Cells
that seek out & Lestray Dying cell
pathogens Gs abnormal




We will be simplifying it a bit ...

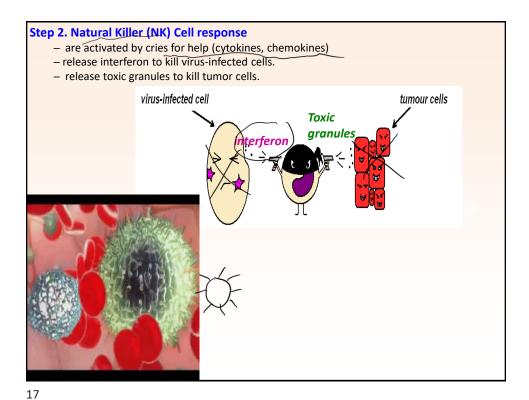

You will be able to study this chapter with the aid of some flow diagram:

Click <u>HERE</u> for sequence of immune response starting with a pathogen gaining entry into your body, from innate immune response to adaptive immune response.


Click <u>HERE</u> for the outline of the innate immune system (including external and internal innnate response) and the adaptive immune response (t-cells and b-cells).

1) Innate Immunity (non-specific) B. Internal innate defense (if things get in, try & kill them without antibodies) Step 1. Phagocytic WBC Cell response. > Neutrophils & Monocytes in blood attack, engulf, & kill pathogens > WBCs secrete endogenous pyrogens to cause fever response. > WBCs secrete chemical cries for help (cytokines & chemokines) Mast cell Step 2. Natural killer (NK) cells secreting > secrete **interferons** to kill viruses. vasodilation of histamine > toxic granules to kill tumor/cancer cells. Step 3. Inflammatory response > Mast cells -(a.K.a. basophils to lyse them.

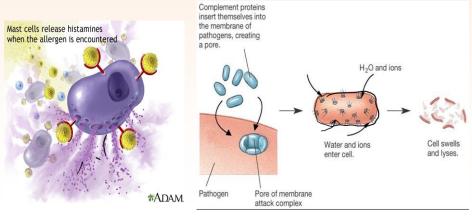
Step 1: Phagocytic WBC response:

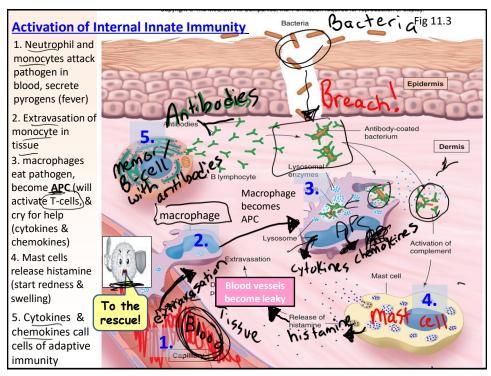

3. Monocytes migrate from blood into tissues by extravasation to become Macrophage that destroy pathogens in tissue.

4. Macrophages places pathogen's antigen it cell surface – now macrophage is called an Apricen – researching Cell (APC).

APCs will activate Helper T – cells (see later in notes)

- Phagocytes then send chemical "Cries for help" = cytokines, chemokines


| Cricular Manual Response | Activated helper Tell releases the h



Mast cells – secrete histamine for inflammation. Causes vasodilation of blood vessels. (Allows more WBCs to enter into tissue as macrophages!)
 Complement proteins - kill bacteria by making holes in them (bacteria burst!)

 & cause inflammation.

Step 3. Inflammatory Response

Review

- > Review of Immune Organs and Cells
- > Innate Immunity (2 types)

External innate immunity (keep pathogens OUT) **Internal innate immunity** (activate when pathogens get in)

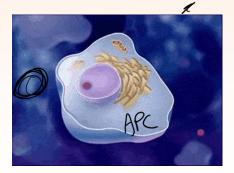
- > Activation of Internal Innate immunity
- **Neutrophils & monocytes** (phagocytic cells in blood that attack pathogens)
 - > secrete endogenous pyrogens (fever)
 - > secrete chemical cries for help (cytokines & chemokines)
- **Phagocytic cells in tissue** (macrophages, which become APC)
- Natural killer (NK) cells
 - > interferon to kill viruses & toxic granules to kill tumor cells
- Mast cells
 - > secrete histamine for inflammation response (edema, redness, pain, vasodilation)
- Complement proteins
 - > poke holes in bacteria to lyse them

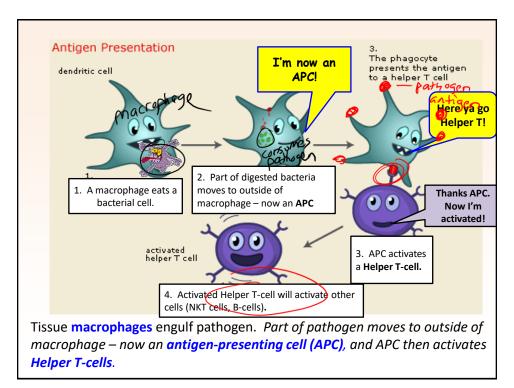
Activation of Adaptive Immunity – or long term specific defenses

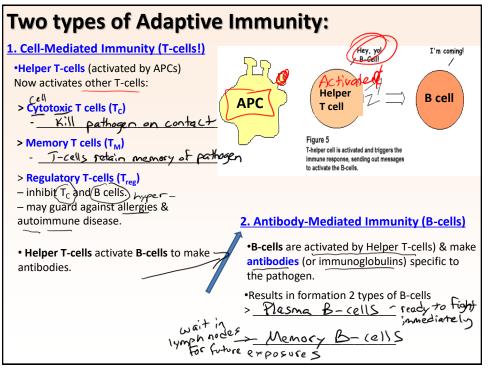
Adaptive immunity:

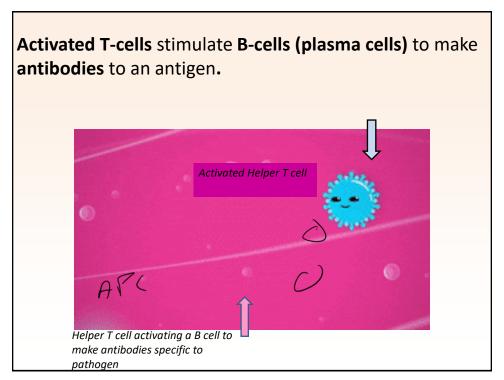
The link between innate immunity & adaptive immunity is APCs & helper T-cells.

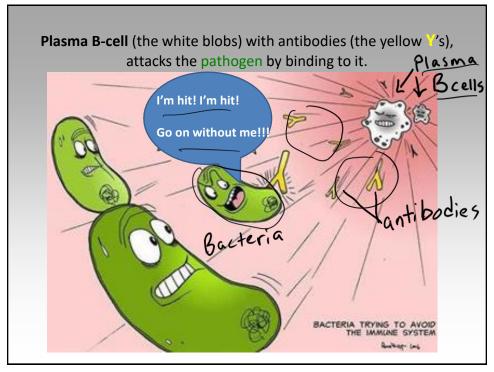
Provided by lymphocytes

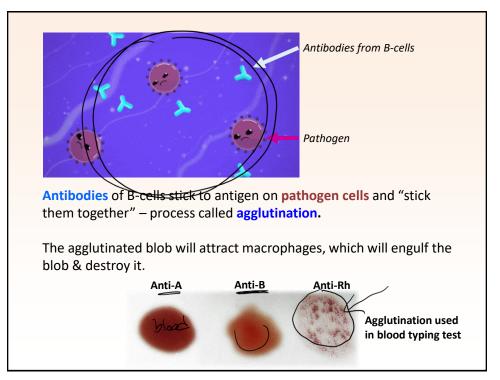

- > Are produced in bone marrow
- > T-lymphocytes (T-cells) & B-lymphocytes (B-cells)
- > T-cells mature in thymus.
 - Are involved in Cell-Mediated Immunity (T-cell immunity
 - T-cells must activate first in order to activate B-cells
- > B-cells mature in lymph nodes & spleen, and produce antibodies.
 - Are involved in Antibody-Mediated Immunity

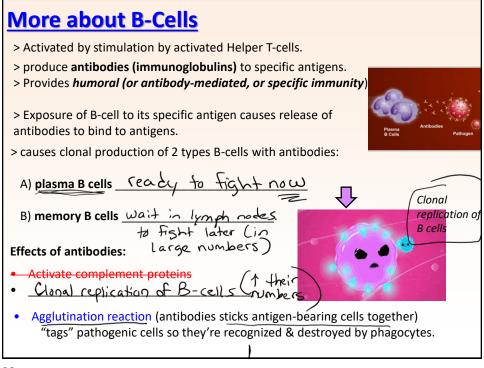

21

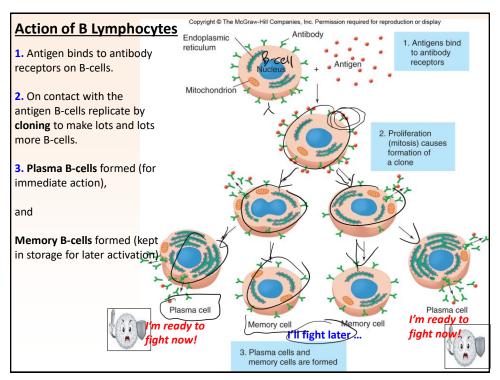

How do T-cells get "activated"?

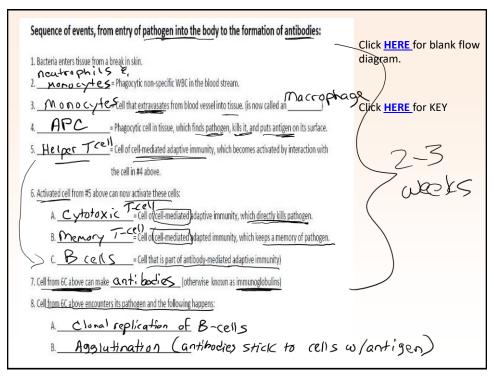

By Antigen-Presenting Cells (APCs) of the internal innate immunity

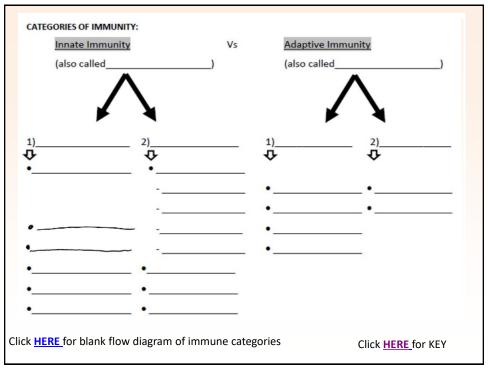

- APC presents antigen to Helper T-cells helper - Helper T-cell then is ACTIVATED! Then T-cells tell other T-cells,
 - and B-cells what to do.

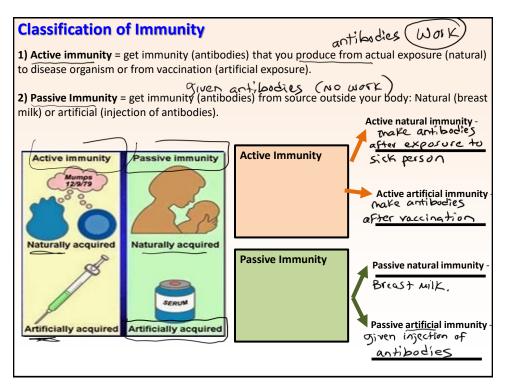












4. Autoimmunity Disorders

Problems with the Immune Response

autoimmunity – when immune cells attack self; can be B or T cells.

*** Abnormal T-cells from Thymus associated with most autoimmune disorders!

Ex. Of autoimmune disorders we've covered:

- > rheumatoid arthritis attack on connective tissue of synovial joints.
- > rheumatic heart disease antibodies produced from strep throat attack heart valves.
- > multiple sclerosis attacks myelin sheaths on neurons.
- > Grave's disease attack on thyroid gland TSH receptor.
- > Myasthenia gravis destruction of nicotinic cholinergic receptors on skeletal muscles.

Review

Adaptive Immunity

Cell-mediated adaptive immunity
Antibody-mediated adaptive immunity

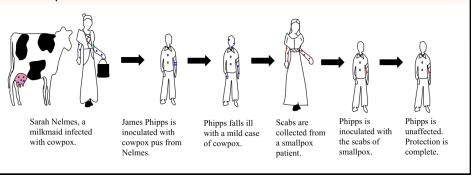
Types of T and B Cells

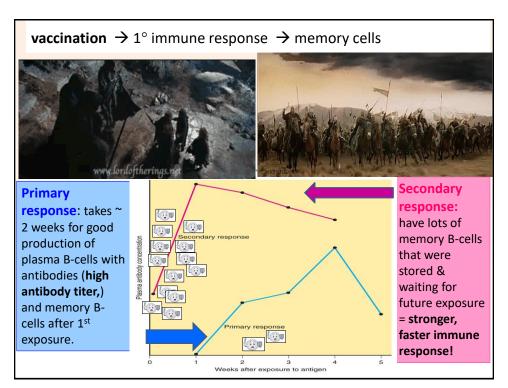
T-cell formation and activity

 T_H , T_C , and T_{reg}

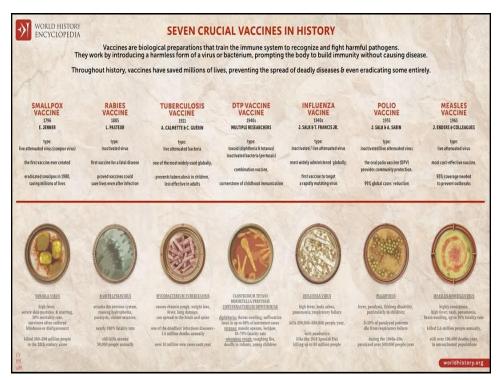
B-cell formation and activity

Classification of Immunity (active vs passive)

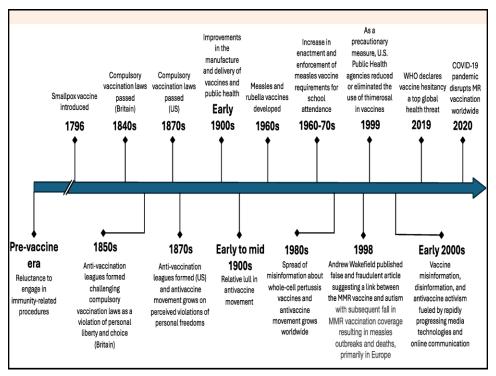

Autoimmune Disorders


End of immune material!

35


Vaccinations

- Late 1700s → Edward Jenner noticed milkmaids rarely had smallpox.
- Jenner reasoned that milkmaids were immune to smallpox because they had been exposed to cowpox.
- To test his hypothesis, he inoculated a boy with cowpox pathogens and then with smallpox pathogens. As predicted, the boy did not contract smallpox.



Vaccinations and Halt of Communicable Disease: THE SCIENCE Example of Vaccine Effectiveness: In the United States, before measles vaccine became available in the mid-1960s was estimated over 530,000 cases with 500 deaths per year. After vaccine – has been 99.9% decrease in incidence of the disease.

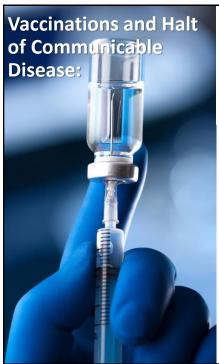
DISEASE	PRE-VACCINE ERA ESTIMATED ANNUAL MORBIDITY*	MOST RECENT REPORTS OR ESTIMATES [†] OF U.S. CASES	PERCENT DECREASE
Diphtheria	21,053	O [†]	100%
H. influenzae (invasive, <5 years of age)	20,000	31‡	>99%
Hepatitis A	117,333	2,890\$	98%
Hepatitis B (acute)	66,232	18,800\$	72%
Measles	530,217	187†	>99%
Mumps	162,344	584 [†]	>99%
Pertussis	200,752	28,639†	86%
Pneumococcal disease (invasive, <5 years of age)	16,069	1,900#	88%
Polio (paralytic)	16,316]†	>99%
Rotavirus (hospitalizations, <3 years of age)	62,500**	12,500 ^{††}	80%
Rubella	47,745	91	>99%
Congenital Rubella Syndrome	152	11	99%
Smallpox	29,005	0 [†]	100%
Tetanus	580	26 [†]	96%
Varicella	4,085,120	167,49055	96%

Vaccinations and Halt of Communicable Disease: THE CONTROVERSY Do vaccinations cause Autism???? NO!

Vaccinations and Halt of Communicable Disease: THE CONTROVERSY

Where did the controversy start?

A study originally published in journal *Lancet* by **Andrew Wakefield in 1995** claimed that his study of **12 children** showed that the 3 MMR (measles, mumps, rubella) vaccines taken together (1st at 1 year, then at 5 -6 yrs) could alter immune systems, causing intestinal woes that then reach, and damage, the brain (autism?)


Scientific community responded:

- > Dozens of epidemiological studies found no merit to his work
- > His claims were based on a tiny sample size.
- > The British Medical Journal called his research "fraudulent."
- > The British journal *Lancet* retracted his publication.
- > The British medical authorities stripped him of his license.

Problem:

People still believe Wakefield. Groups of people began to NOT vaccinate their children.

43

- Nationwide, vaccination rate against diseases has stayed at 90 % or higher, but % in some of the country now well below that, making those communities more vulnerable to disease outbreak.
- There has been an increase in cases of Measles in the US especially in counties where vaccination rate below 90%.
- Medical doctors & epidemiology experts say that vaccination rate of
- $^{\sim}95~\%$ needed to protect a community by "herd immunity".

<u>Herd immunity</u> = indirect protection from infectious disease when a large % of population has become immune (natural or vaccinationacquired) it reduces potential exposure of nonimmune people (aren't or can't be vaccinated) to that disease.

New Secretary of the U.S. Department of Health and Human Services: RFK Jr. (Feb 2025)

How bad is this??

BAD (he has long been an anti-vaxxer)

> Recommended giving vitamin A to treat measles in children. Vitamin A is stored in the liver, and high levels are toxic and can lead to liver damage.

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(24)02603-5/fulltext

https://edition.cnn.com/2025/03/05/health/measles-rfk-vitamin-a-misinformation/index.html

https://www.cnn.com/2025/03/26/health/texas-measles-vitamin-a-toxicity/index.html

45

Some of the population. **Some of the population. **Contagious disease spreads through some of the population.** **Contagious disease spreads through some of the population.** **Contagious disease spreads through some of the population.** **Spread of the population gets immunized.** **Most of the population gets immunized.** **Spread of the popula

Herd Immunity

The **top box** shows an outbreak in a community in which a **few people are infected (shown in red)** and **the rest are healthy but unimmunized (shown in blue);** the <u>illness spreads freely</u> through the population.

The middle box shows a population where a small number have been immunized (shown in yellow); those not immunized become infected while those immunized do not.

In the **bottom box**, a large proportion of the population have been immunized (yellow); this prevents the illness from spreading significantly, including to unimmunized people.

Review

Vaccination

History of vaccination
Action of vaccinations on immunity
Controversy on vaccinations
[There shouldn't be!!! - Vaccines work!]